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ABSTRACT
Evaluating the forecasting ability of time-series involves observa-
tions of multiple charts representing different aspects of model
accuracy. However, the sequence of the charts observed by users
is not controlled and it is difficult for users to discover relations
among charts. Therefore, we propose a method for constructing a
navigation structure that shows these relations based on the syntax
and semantics of the charts. An excerpt from the structure is used
as a context menu that allows users to navigate through a series
of charts and explore their relations in a structured way. A qual-
itative study is conducted to evaluate the system and the results
show that our approach helps users explore the connections among
charts and enhances the understanding of time-series forecasting
performance.

CCS CONCEPTS
• Human-centered computing→ Human computer interac-
tion (HCI);Visual analytics;Visualization systems and tools.
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1 INTRODUCTION
Time-series forecasting is a process of using statistical models to
forecast future values of a time series based on the history of that
series [10]. Many businesses (e.g., stock price, retail sales, energy
consumptions) rely on and benefit from the power of forecasting.
Evaluating the forecasting ability of models on future data plays an
important role in model selection because more accurate forecasts
can result in better business decisions.

The two main activities in the evaluation are comparing model
accuracy (e.g., RMSE) and comparing predicted with actual values.
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Showing accuracy statistics in a table is themost popularmethod for
accuracy comparison, used by many tools (e.g., R, TiMoVA [6]). The
table arranges rows as candidate models and columns as accuracy
metrics. A common approach to comparing predictions is plotting
the predicted and the observed values in a 2D chart. Unfortunately,
users then need to evaluate models by trying to merge tables and
plots.

However, a table only lists statistics and does not support ex-
ploratory analysis, and can therefore bemisleading (e.g., Anscombe’s
quartet [1]). The situation becomes even more complex when k-
fold cross-validation is applied. Then, model accuracy stops being a
single measure and becomes a averaged value calculated by k-fold
test sets. The reliability and robustness of models can be markedly
different even if they sharing similar averaged accuracy. Although
the table can list the associated standard deviations and even in-
dividual accuracy of each fold, these statistics do not facilitate the
exploration.

A straightforward solution to this problem is using multiple
charts to represent these statistics, which enable the exploratory
analysis. This requires the observations of several charts depicting
different aspects of model accuracy (e.g., averaged accuracy, indi-
vidual accuracy of folds). Also, users need to observe the charts
of model predictions before selecting the optimal model. The se-
quence of observing these charts is usually not controlled, and
users have the freedom to decide the order, depending on their
knowledge and exploration thus far. However, this solution does
not create a clear structure of the visual exploration process, and it
is not easy for users to understand the relations among charts [12].
The sequence chosen by users may not best possible reveal the
connections among the charts.

Therefore, we investigate how structured navigation helps users
explore the space of model accuracy, folds, and forecasts. We pro-
pose a method whereby users can systematically navigate through a
series of charts representing different aspects of model performance
and make comparisons. The purpose of this method is to help users
better understand the hidden relationship between accuracy, folds,
and forecasts.

Our threefold contributions are:
(1) a method of constructing a graph structure for structured

navigation by syntax and semantics of charts,
(2) an interactive visualization tool based on the method to

explore the relations among model accuracy, folds, and fore-
casts, and

(3) a qualitative user study to evaluate what insights users
gained from our approach.

https://doi.org/10.1145/3399715.3399906
https://doi.org/10.1145/3399715.3399906
https://doi.org/10.1145/3399715.3399906


AVI ’20, September 28-October 2, 2020, Salerno, Italy Wang et al.

2 BACKGROUND
2.1 Model Accuracy
Time-series forecasting models are within the framework of regres-
sion models that predict continuous values instead of categorical
values. Model accuracy is about summarizing forecasting errors,
which are the difference between observed values and their fore-
casts [19]. There are several accuracy metrics commonly used to
assess the model accuracy of a forecasting model, such as mean ab-
solute percentage error (MAPE), mean absolute scaled error (MASE),
root mean squared error (RMSE), and mean absolute error (MAE).
Although these metrics are supported by different mathematical
algorithms, all of them serve the same purpose to quantify the
general performance of a model.

2.2 Methods of Evaluating Model Accuracy
The following three methods are frequently used for calculating
accuracy metrics.

2.2.1 Out-of-Sample Evaluation (OOS). Themethod randomly splits
a dataset into a training set and a test set1. The training set is for
estimating model parameters, building, and improving models. The
test set is used for calculating the scores of accuracy metrics and
assessing the model performance for future data.

2.2.2 K-fold Cross-Validation (CV). A data set is divided into k-
equal-sized subsets, which are also known as k folds. One of the
k folds is treated as the test set, and the rest of the folds form
the training set. This procedure is repeated k times. Each time,
a different fold is treated as a test set. K is usually 5 or 10. The
accuracy score is an averaged value over all scores of k-fold test
sets.

2.2.3 Information Criterion Statistics (ICS). ICS is a general term
for a set of criteria for evaluations. The most commonly used crite-
ria are Akaike Information Criterion (AIC), Bayesian Information
Criterion (BIC), and adjusted R2. Unlike the two methods above,
these criteria have rigorous theoretical justifications and mathe-
matical formulae [20] to calculate corresponding scores without
partitioning a data set.

Both OOS and ICS are conceptually simple and easy to compute,
but they have potential drawbacks [20]:

(1) OOS does not make full use of the data, and the accuracy
metrics are highly dependent on how the data set is parti-
tioned.

(2) Compared to ICS, CV offers a direct estimate of model ac-
curacy and makes fewer assumptions about the true un-
derlying model. Moreover, ICS is not appropriate for high-
dimensional data due to the difficulty of estimation of σ 2.

CV is widely used as a standard evaluation method in machine
learning and is more potent than the other two methods, but prac-
titioners often omit CV in the evaluation of time series forecasting
models due to the inherent serial correlation and potential non-
stationarity of time series data [4]. Recent work show that k-fold

1Sometimes three subsets include a validation set for fine-tuning model parameters,
which is out the scope of this study.

cross-validation leads to a more robust model selection for time
series forecasting compared to other evaluation methods [2–4, 19].

Several works visualized CV to explain the complexity and un-
certainty of models [21, 26]. However, it seems that the relationship
between model accuracy and individual folds in time-series fore-
casting is not well explored. This study attempts to fill this gap by
structured navigation.

2.3 Evaluating Model Accuracy in Time Series
Forecasting

From the perspective of k-fold CV, the evaluation can be divided
into two stages. The first stage uses k training sets to iteratively
evaluate models with the purpose of model refinement and feature
selection. Charts (e.g., ACF plot, PACF plot, and residual analysis
plots) used at this stage represent the goodness of fit (strength
of fit) of models, which help users investigate how well a model
fits the observations [25]. A set of candidate models is selected
at the end of this stage. Then, the last stage uses the k test sets
to evaluate the forecasting ability of models on unseen data and
select the optimal model. Charts (e.g., accuracy metrics over models,
prediction over time) used in the last stage depict the ability of a
model to accurately predict unseen data instead of the goodness
of fit. The focus of this study is about evaluating the forecasting
ability of models on future data. Therefore, charts related to the
goodness of fit are not considered in this study.

In the field of time series modeling, visual analytics systems [6,
14, 15, 22] mainly focused on the first stage, and many techniques
were developed to help model developers exploratory validate and
refine models. For example, TiMoVA [6] is a prototype that provides
visual guidance in the task of ARIMA model selection. It helps
domain experts diagnose time series models by interactive plots
(i.e., autocorrelation function, partial autocorrelation function, and
residuals), and iteratively refine the models.

Gotz and Sun [14] proposed a method using a modified decision
flow to visualize accuracy scores of predictive models by color.
The method aims to help users identify problematic samples with
low accuracy and problematic features associated with incorrect
predictions. Similarly, Hao et al. [15] also used new visual accuracy
color indicators to validate the predicted results from time series
models. Even in a broader scope in machine learning, many visual
analytics tools such as [11, 23] still serve the first stage with the
same purpose.

Furthermore, previous work (e.g., [6, 23]) used table to evalu-
ate model accuracy. It lists models in rows and model metrics in
columns. However, the table only maps models with associated
scores, which is not enough for evaluating model accuracy. Select-
ing the optimal model requires a visual analysis of several accuracy-
related plots to better understand the triangle relationship among
model accuracy, folds, and predictions.

Therefore, this study attempts to fill the gap by investigating how
structured navigation can assist users in exploring the relations
between accuracy, folds, and predictions to evaluate the forecasting
ability of time-series models in the last stage.
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3 DESIGN
This section describes the design of our tool that facilitates navi-
gation through a series of charts in a structured way. The goal of
the tool is to help users explore the relations among the charts and
enhance the understanding of model forecasting abilities. We use a
scenario across this section and Section 4 Evaluation to explain
the motivation and potential tasks.

3.1 Scenario
Alex works at a retail company. He needs to forecast the percentage
changes in quarterly personal consumption expenditure in the US
for the next eight quarters based on a data set2. He chooses the
5-fold cross-validation as the evaluation method. He follows the
procedure of forward-chaining [19] to split the training and test
sets by setting the time window of each test set as eight quarters.
Then, he uses the five training sets to train several AutoRegressive
Integrated Moving Average (ARIMA) models with different com-
binations of hyperparameters (i.e., non-seasonal parameters: p, d,
q; seasonal parameters: P, D, Q). He examines the goodness of fit
of the models and excluded models that either violates model as-
sumptions or are with low accuracy. Three models remain for the
last stage. He feeds the candidate models with the five test sets,
and the models generate the forecasting results including accuracy
statistics and predictions.

3.2 Tasks
We set the scenario and the forecasting results as the working
example and completed a review of the literature [10, 19, 20, 25] to
understand how to evaluate time-series models. Then, we worked
with two statisticians to conclude the following tasks for evaluating
the forecasting ability of time-series models. A user needs to explore
the results and compare:

(1) Accuracy metrics across models (e.g., RMSE, MAPE)
(2) Accuracy metrics across folds
(3) Distance between observed and forecasted values
(4) Consistency between accuracy metrics and predictions

3.3 Data Attributes
Based on the forecasting results in the scenario, the tasks, and charts
used for evaluation in literature, we summarized five attributes.
Table 1 lists such five attributes and the associated descriptions.
Each attribute represents one dimension of the statistical data, and
each dimension can be mapped to a visual component in a chart.
To construct a 2D chart, typically a numerical attribute is mapped
with the y-axis, a categorical or numerical attribute is mapped with
the x-axis, and one or more categorical attributes can be encoded
as hue, saturation, or shape [24].

3.4 Syntax of Constructing charts
We aim to construct several 2D charts by using the combinations
of the five attributes, which can help users complete the tasks in
Section 3.2. The constructed 2D charts should represent different
aspects of forecasting abilities. To better depict and construct the

2The data set was obtained from the fpp2 package about quarterly percentage changes
in US consumption expenditure from 1996 - 2015

Name Type Representation
Model Categorical Candidate models (e.g., M1, M2)
Fold Categorical Folds represent the k test data sets
Time Numerical Timestamps in a specific period
Accuracy Numerical Accuracy metrics (e.g., RMSE)

DV ODV Numerical Observed DV in the k test sets
PDV Numerical Predicted DV based on the k test sets

DV: Dependent Variable ODV: Observed DV PDV: Predicted DV

Table 1: Description of Extracted Data Attributes

2D charts, we use Wickham’s A Layered Grammar of Graphics [28]
as grammatical rules, which allows us to concisely describe the
components of charts, to gain insight into the construction of the
charts, and to unfold hidden connections between seemingly dif-
ferent charts [5, 9, 28, 29]. To simplify the written expression of
the grammar, we only use the following two layers to depict the
mapping between data dimensions and visual components.

3.4.1 Layer of aesthetics. This layer specifies the mappings be-
tween data attributes and visual components (aesthetics) [28]. For
example, we might map folds to the x-axis, RMSE (accuracy) to the
y-axis, and models to hue, which can be represented in code as

aes(x = Fold,y = RMSE,hue = Model)

3.4.2 Layer of geometric object or geom. Geoms explain how an ab-
stract component will be rendered (e.g., points, lines, polygon) [28].
Together with the layer of aesthetics, this defines a statistical chart.
For example, we can describe the chart in Fig. 1.3a as

aes(x = Fold,y = RMSE,hue = Model) + дeom_line

Based on Wickham’s grammar [28] and Munzner’s guidelines of
visual encodings [24], we mapped the five attributes to three cat-
egories of visual components (aesthetics) in Table 2. A 2D chart
can be constructed by combining a visual component from each of
the three categories. The total number of combinations is 24 (3*2*4
based on the number of attributes in each category in Table 2). We
mapped the attributes from each combination to the two layers
in the grammar and attempted to construct the corresponding 2D
chart. However, 19 combinations cannot be formed into any forms
of 2D charts due to syntax errors (e.g., aes(x = Model, y = Accuracy,
hue = Model)).

Therefore, we constructed five charts according to the rest of the
five combinations and examined the semantics of each chart based
on the requirements in Section 3.2. Two charts were found with

Visual Component Data Attributes
X Axis as 1st Dimension Model, Fold, or Time
Y Axis as 2nd Dimension Accuracy, DV
Others (e.g., hues, shapes)

as 3rd Dimension Null, Model, Fold, or Model & Fold

DV: Dependent Variable

Table 2: Mapping between Visual Components and Data At-
tributes
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Figure 1: Four Types of Charts with Grammar Notations

similar semantics, and they were considered as one chart. Finally,
four types of charts were summarized from this process.

3.5 Charts Depicting the Forecasting Ability
Fig. 1 shows the four charts and the associated syntax based on the
scenario in Section 3.1. The following part describes the grammar
of each chart along with its corresponding graph shown in Fig. 1,
the purpose of each chart, and the relations between charts. To
effectively refer to each chart, we name each chart by combining the
initial letter of each aesthetics in the grammar (e.g.,MA represents
the chart in Fig. 1.1a and its grammar in Fig. 1.1b).

MA in Fig. 1.1a and Fig. 1.1b describes the averaged forecasting
accuracy of the three models.

MAF in Fig. 1.2a and Fig. 1.2b depicts the accuracy of each indi-
vidual fold from the three models. Each line represents an accuracy
of a fold in a model. The folds in MAF convey the variation of the
accuracy measures compared to the averaged accuracy represented
by MAF.

Similar toMAF, FAM in Fig. 1.3a and Fig. 1.3b also use model,
accuracy, and fold to construct the chart. However, the two charts
have different focuses. FAM helps users compare the three models
by folds, whileMAF emphasizes the comparison of folds in each
model and the variation of the forecasting accuracy of a model. The
two charts are transferable by switching the values of the x and
color aesthetics in the grammar. Moreover, FAM andMA are also

transferable by removing the third dimension hue = model and
change x aesthetics to x =model in Fig. 1.3b.

The grammar of the three charts above depict the relationship
between model accuracy, model, and fold. The accuracy in the
grammar is a general term representing many different accuracy
measures (e.g., RMSE, MAPE, MASE). Therefore, this grammar can
yield many similar charts by replacing Accuracy with any accuracy
measures for time-series forecasting. Fig. 1.1a - Fig. 1.3a are the
examples of Accuracy = RMSE. We define these similar charts as
alternative charts, which share the same abstract grammar.

TDMF in Fig. 1.4a and Fig. 1.4b depicts the relationship between
the dependent variable (DV), time, model, and fold. A line in TDMF
represents a fold of a model. Models and folds are encoded as hues
and saturations, respectively. This chart allows users to compare
the predictions of each model with the values of observed DV. The
observed DV is represented as MO in the legend.

3.6 Directed Graph Structure for Navigation
Based on the syntax and semantics of the four types of charts, we
propose a method for connecting these charts by a directed graph
data structure that allows users to explore the hidden connections
among the charts through structured navigation. Charts are linked
according to the closeness of their syntax in the graph.We introduce
the components of the graph in the following two subsections.

3.6.1 Vertices. Each chart is represented as a node in the graph.
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Figure 2: Graph Structure for Navigation based on the Scenario in Section 3.1

Closeness 1 2 3 4 5

NumOfChanges 5 4 3 2 1
High Closeness: 5 or 4; Medium Closeness: 3; Low Closeness: 1 or 2

Table 3: Closeness and Number of Changes

3.6.2 Edges. The closeness between two charts is measured by the
number of changes of aesthetics in the syntax needed to transform
one chart to the other chart. The maximum number of syntax
changes in 2D space is five because five dimensions of a data set
can theoretically be mapped with five visual components (i.e., x, y,
hue, saturation, and shape) in a 2D chart. Therefore, we use numbers
1 to 5 to quantify the degree of the closeness and the number of
changes. We also put the closeness into three categories—high,
medium, and low. Charts are considered highly close when the
number of changes is within two steps of changes.

Table 3 shows the relationship between the closeness of two
charts and the number of syntax changes needed for the transfor-
mation. That is, the degree of closeness is inversely proportional
to the number of changes. For example, Fig. 1.1a is highly close to
Fig. 1.2a but not close to Fig. 1.5a because of the number of changes
needed in the syntax.

The priority of connecting two charts is proportional to the level
of closeness. The following steps show how to make connections
among charts.

(1) Alternative charts with the same abstract grammar are
connected. Each group of the connected alternative charts
selects one chart as a representative, which can be connected
with other charts with a different abstract grammar.

(2) A chart can be connected to another chart only if the level
of closeness between the two charts is equal or higher than
level of closeness between the chart and the rest of charts.

To demonstrate to the construction of the graph, we used RMSE,
MAPE, and MAE as accuracy metrics, and generated three alterna-
tive charts of MA, MAF, and FAM respectively. Fig. 2 shows an
example of connecting nine charts to form a graph structure based

on the steps above. We connected the alternative charts of MA,
MAF, and FAM and formed three groups in Fig. 2 connected by
the pink arrows. Then, we selected the charts with y = RMSE from
the three groups as representatives awaiting for the connections
with other charts in a different grammar description. In the next
step, we connected the three representatives (Fig. 2.1a, Fig. 2.2a, and
Fig. 2.3a) by blue arrows due to the high level of closeness. TDMF
(Fig. 2.4) is connected with the representatives of MAF (Fig. 2.2a)
and FAM (Fig. 2.3a) based on the closeness-level distance between
them which is shorter than the distance between TDMF andMA.

The graph structure in Fig. 2 connects the unrelated charts ac-
cording to the number of transformable changes (or level of close-
ness) in syntax. Users can follow a path (i.e., a directed path is a
sequence of edges linking a sequence of charts in a directed graph.)
to observe a sequence of changes from the starting chart to the end
of chart and understand the hidden connections among the charts
in the path.

3.7 Visual Design
Elmqvist et al. [12] proposed a design of structured navigation in
scatterplot matrices to facilitate structured visual exploration of
a multidimensional data set. The matrix serves as an overview of
the dataset and allows users to explore and navigate the data set
through a series of interaction techniques.

We use syntax and semantics of charts to construct a graph for
structured navigation rather than thematrix. Furthermore, Elmqvist
et al. [12] and other works in geographic maps [8, 18] use the
overview-detail design to facilitate navigation. The overview assists
users in orientation, and users can quickly switch the detailed view
to a different location on the map by interacting with the overview.
The purpose of our design is to facilitate the exploration of the
connections among charts through structured navigation. Although
the graph structure can serve as an overview for navigation, it may
distract users from exploration. Therefore, we opted out of the
overview and chose the context menu serving as a navigation tool.

Fig. 3 demonstrates the visual design of our navigation system.
Our system consists of two main visual components—a detailed
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1 2

3

Figure 3: Overview of the System with Context Menu for
Navigation

view and a context menu. The detailed view shows the currently
observed chart that is one of the nine charts in Fig. 2. The context
menu is based on the detailed view and shows an excerpt from
the graph structure in Fig. 2. The excerpt consists of the charts
that are connected with the detailed view in Fig. 2. All the charts
composing the context menu are shown in the form of thumbnails
instead of text descriptions. Users can immediately know the chart
once they observe a thumbnail, and they do not need to map the
descriptions with each chart. The context menu can be triggered
by a right mouse click on the detailed view. When users left click a
thumbnail view, the detailed view starts the transition to the clicked
chart.

For example, Fig. 3.1 is the detailed view displaying Fig. 2.1a.
Fig. 3.2 is the context menu consisting of four thumbnail views
representing Fig. 2.1b, Fig. 2.1c, Fig. 2.2a, and Fig. 2.3a respectively.
The four thumbnails are connected with the detailed view according
to the relationships illustrated in Fig. 2.

The context menu is related to which of the nine charts is shown
on the detailed view. For example, when Fig. 2.4 is shown on the
detailed view, its corresponding context menu only consists of
Fig. 2.2a and Fig. 2.3a.

3.8 Navigation
Users can navigate between a series of charts through the context
menu. Our system supports two types of navigation in different
scales.

3.8.1 Navigation within Alternative charts with the same abstract
syntax. This type of navigation allows users to explore the charts
only between alternative charts without involving other charts
with different syntax in the navigation.

For example, the three charts (Fig. 2.1a, Fig. 2.1b, and Fig. 2.1c)
are the alternative charts of AM. The detailed view is displaying
Fig. 2.1a. Users can right click the text label for the y axis (Fig. 3.3)
to show the context menu consisting of the detailed view’s two
alternative charts (Fig. 2.1b and Fig. 2.1c). Once an alternative
chart (e.g., Fig. 2.1b, y = MAPE) is clicked, the detailed view starts
the transition to the clicked chart Fig. 2.1b y = MAPE.

1b MA

1c

MA1a

MA 3a FAM

3b FAM

3c FAM

Figure 4: Dynamically Established Connection between MA
and FAM

Meanwhile, changes also happen in the graph structure. Fig-
ure 2.1a (y = RMSE) loses the links to Fig. 2.2a (y = RMSE)
and Fig. 2.3a (y = RMSE) . Instead, Fig. 2.1b (y = MAPE) re-
places Fig. 2.1a (y = RMSE) as the representative of MA. Fig. 2.1b
(y = MAPE) establishes the connections with Fig. 2.2b (y = MAPE)
and Fig. 2.3b (y = MAPE). Fig. 4 displays one part of the newly
established connections between Fig. 2.1b and Fig. 2.3b.

The example indicates that the graph structure is not static. This
feature can reduce the steps of navigation from one alternative
to another alternative chart with different syntax. The number of
steps from Fig. 4.1b to Fig. 4.3b is one instead of three in Fig. 2.

3.8.2 Navigation between connected charts. Users can explore the
whole structure of the graph through the context menu triggered
on the detailed view. The thumbnail views on the left column of
the context menu (Fig. 3.2) allows users to explore the alternative
charts (Fig. 2.1b and Fig. 2.1c) of the detailed view. Users can explore
the charts with different abstract grammar through the thumbnail
views (Fig. 2.2a and Fig. 2.3a) on the right column of the context
menu (Fig. 3.2).

3.8.3 Steps of Navigation. The maximum number of steps from
one chart to its furthest chart is two in our design. The depth of
the graph is shallow, and users can reach to any charts in the graph
quickly. Therefore, this is another reason that the graph structure
is opted out as an overview. We set Fig. 2.1a as the starting point of
the navigation shown in the detailed view for users.

3.8.4 Animated Transitions. The animated transition can improve
the understanding of the difference between statistical charts [12,
13, 16, 27]. Unlike Elmqvist et al. [12] using 3D animation, we use
staged 2D animation to explain the syntax difference between two
charts. We follow the guidelines of Heer and Robertson [16] to set
1 second as the animation duration for each stage. The maximum
total transition time is 3 seconds since three changes are needed to
transit from either FAM or MAF to TPMF.
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4 EVALUATION
4.1 Rationales of the Study
The purpose of this study is to investigate how participants ex-
plore the relations between model accuracy, folds, and forecasts by
structured navigation, and what insights they gain during the ex-
ploration. The evaluation for our tool is different from typical HCI
studies (e.g., [18]), which usually measure accuracy in answering
questions, recall of map objects, and task completion time. Quanti-
fying either completion time or recall of objects does not help us
understand how users explore and analyze forecasting accuracy sta-
tistics. Therefore, we choose think-aloud as the evaluation method
in this study.

4.2 Participants
10 participants (age m = 31.3, SD = 7.5) were recruited for the study.
The ratio of males to females is 7:3. Based on the self-reported ex-
pertise on evaluating time-series models, we had four novice users,
four intermediate users, and two expert users. They are researchers
and students with educational backgrounds in computer science
and statistics from local universities. The study took approximately
40 minutes on average, and each participant received a gift (about
16.7 Euro in value based on the city-averaged wage per hour) as
compensation for their participation.

4.3 Data, Forecasting Models, and Tasks
The following three data sets3 were used in this study. D1 was
only for the training purpose. D2 and D3 were used for the test
session. The sequence of D2 and D3were counter-balanced between
participants.
• D1: quarterly visitor nights (in millions) spent by interna-
tional tourists to Australia (1999-2015).
• D2: quarterly retail trade index in the Euro area (1996-2011).
• D3: quarterly percentage changes in US consumption expen-
diture (1996 - 2015).

We followed the procedure described in Section 3.1 to train the
models and test the models. Our tool visualized the statistics gener-
ated by the candidate models and organized them in a structured
way.

Participants were asked to explore the charts by using our tool
andmake an analysis of the forecasting ability of the three candidate
models from D2 and D3, respectively.

4.4 Procedure
The study started with a 10-minute training session. We gave a
brief introduction to the study and the system. The participants
were asked to try the system and were encouraged to ask questions
during this session. The test session was about 20 minutes. We
asked participants to evaluate the model forecasting abilities of two
sets of models. Each set of models was based on one of the data sets
mentioned above. Participants were asked to speak their thoughts
out during this session, and we observed their operations without
offering any help. We had a ten-minute interview in the last session
and thanked the participants after the study. Audio and screen were
recorded during the entire study.
3The three sets were obtained from the fpp2 R package.

Our system ran on Macbook Pro 2015 with a mouse and was
displayed on an external 27-inch monitor with a 2560 x 1440 pixels
resolution.

5 RESULTS
We used the field notes as guidance to partially transcribe the audio
recordings and coded the transcription based on the typology of
data models [7]. Then, we made an analysis of the transcription by
affinity diagram method [17].

5.1 Exploration Through Structured
Navigation

In general, the exploration path by participants can be summarized
asMA←→MAF←→ FAM←→TDMF. They went back and forth
to explore and make the analysis of the charts by structured navi-
gation. Intermediate and expert participants tended to make a tour
of all the charts through the context menu and gained an overview
before a detailed analysis of individual charts. Novice participants
started the analysis from one chart to another chart without the
tour.

Participants found that structured navigation allows them to
explore the charts in depth. For example, P2 stated, "the context
menu navigated me from a simple view to a deeper view and the
deepest view." P8 also found that he had the flexibility to explore
different charts with increasing complexity, and the navigation
helps him know what is going on with the data.

5.1.1 Accuracy and Variation. Participants usedMA to compare
the averaged forecasting accuracy across the models. They switched
between the three alternative charts (RMSE, MAPE, MASE) to
check whether the performance was consistent. When it was not
consistent, participants either set one metric as the primary refer-
ence (i.e., P2, P3, P5, P7, P9, P10) or visually made an average of the
three measures (i.e., P1, P4, P6, P8). However, novice participants
did not pay attention to the changes of y-scales when switching
between three alternative charts. When the averaged accuracy
in MA is similar, participants looked at the MAF to check the vari-
ations of each model. P8 and P10 also used FAM to compare the
variations of three models folds, but most of the participants com-
pared the model performance per fold by FAM. They used FAM to
identify a fold as outlier where models performed the worst. P9 said,
"This chart (FAM) helps me better observe folds and find outliers.
It is easy to check the forecasting consistency of models by this
chart."

Also, four participants only used the context menu for the y-axis
to switch between alternative charts. The rest of the participants
mainly used the context menu on the detailed view to switch.

5.1.2 Prediction. We found that participants used TMFD to visu-
ally analyze the distance between observed values and predicted
values, and to confirm their findings from previous charts. For ex-
ample, P3 and P6 frequently switched between TMFD and FAM
to compare the distance between predicted and actual values. P3
stated that the two charts are similar that he can easily map each
fold in FAM with each time-series segment in TMFD. It is useful
for him to analyze model performance by combining the accuracy
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of each fold with the distance between observed and prediction
values.

5.2 Understanding the Relations between
Charts

We found that participants used structured navigation to under-
stand the relations between model accuracy, folds, and predictions.
For example, P1 stated, "The prior knowledge gained from previ-
ous charts I observed helps me to understand the prediction chart
(TDMF)."

P1, P2, P4, P7, P9 found that they can evaluate the forecasting
ability from different perspectives through structured navigation.
P9 stated, "I can look at the accuracy by folds, by models, and by
predictions." P3 said that he followed the menu, found patterns
between charts, and explored different types of charts and different
types of accuracy metrics.

5.3 Animated Transition
All participants found that the animated transition helps them
understand the difference between the two charts. For example, the
spreading-out folds made P1, P5, P6, P8 realize the variations of
three models whenMA is transiting toMAF.

P2 stated, "At the beginning, I did not understand the meaning
of the averaged accuracy (MA), but when I observed the transition
from MA to MAF. I understand the meaning of both charts." P4
said, "The animation helps me notice the changes of the y-scales
when I switched from one accuracy metric to another metric."

5.4 Thumbnail view
Participants found the thumbnail views intuitive and self-explanatory.
P5 stated, "The context menu is very intuitive, and I know where
to go when I see the thumbnail views." Thumbnail views also fa-
cilitated the comparison between charts with different accuracy
metrics. P4 said that "even though the views are mini, I can still
observe the difference between RMSE, MAPE, and MASE. The big
view (detailed view), together with the mini views (thumbnails) are
similar to putting views side by side. Sometimes I don’t need to
switch. I can directly compare them by the mini views".

5.5 Context Menu
All participants did not feel lost without an overview map during
the navigation. They felt the control of the navigation, and they can
see different angles of the model accuracy by structured navigation.
For example, P1 stated, "I don’t feel I got lost. I can select where to
go. I am in control of the navigation". P7 stated, "I’d rather click a
few more times (to get the desired chart) than not know exactly
where to go. If I have all the options at once, I will be confused."
However, P10 preferred to see a context menu with all the charts
in thumbnails at once.

6 DISCUSSION AND FUTUREWORK
We have presented a method for constructing structured navigation
interfaces. The use of the method is illustrated with a tool to explore
time-series models. The tool aims at supporting the exploration of
the relations among charts and thereby allow users to build up an

understanding of the models. By following the steps described in
this paper, the method is applicable to many other data sets, both
concerning time series but also other types of data. The qualitative
evaluation suggests that our tool supports this kind of exploration
and facilitates the evaluation of how well time-series models fore-
cast observations. However, some points remain unexplored; we
discuss three of them next.
Scalability. This study focused on structured navigation for evalu-
ating the forecasting ability of time series. We did not investigate
how structured navigation can help users validate the goodness of
fit of models in the k-fold training sets. Our method should be scal-
able to generate the graph structure. However, the size of the graph
of charts may become quite large, because more types of charts
are introduced. For instance, we might run out of space in context
menus due to a large number of charts being closely associated
with the current chart. Clustering charts or having multi-layered
menus might be solutions to this problem.

Also, as the number of models and folds increases in a 2D chart,
we may run out of the visually distinguishable options for the hue
and saturation encodings. We need to investigate new encoding
methods to address this problem.
Interaction. We did not provide many interaction techniques in
this study because we hope that participants only focus on the
navigation and the understanding of relations between charts with-
out introducing biases. In the future, we need to design proper
interactions (e.g., filtering, zooming) to facilitate comparison and
exploration.
Different user groups. Our tool aims to serve users with different
expertise. The evaluation shows that our tool supports this purpose.
However, we also observed that participants with different expertise
behaved differently. Therefore, we need to investigate further how
different user groups use the tool and make proper designs for
them.

7 CONCLUSION
In this paper, we proposed a method of constructing a graph struc-
ture that connects multiple charts based on their syntax and seman-
tics. Then, we developed a visualization tool using an excerpt from
the graph as a context menu, which helps users navigate through a
series of charts depicting different aspects of the time-series model
forecasting ability. A think-aloud user study was conducted to
evaluate the tool, and the study suggests that structured naviga-
tion facilitates the visual exploration of the relations among model
accuracy, folds, and predictions. Thus, the tool enhances the under-
standing of the forecasting performance of time-series models.
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